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Optical control of the spin coherence of quantum well electrons by short laser pulses with circular or linear
polarization is studied experimentally and theoretically. For that purpose the coherent electron spin dynamics
in a n-doped CdTe/�Cd,Mg�Te quantum well structure was measured by time-resolved pump-probe Kerr
rotation, using resonant excitation of the negatively charged exciton �trion� state. The amplitude and phase
shifts of the electron spin beat signal in an external magnetic field, that are induced by laser control pulses,
depend on the pump-control delay and polarization of the control relative to the pump pulse. Additive and
nonadditive contributions to pump-induced signal due to the control are isolated experimentally. These contri-
butions can be well described in the framework of a two-level model for the optical excitation of the resident
electron to the trion.
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I. INTRODUCTION

Semiconductor spintronics relies on the possibility to con-
trol electron spins by non-magnetic methods so that high-
frequency manipulation on time scales approaching the pico-
and femtosecond ranges, well below the coherence time,
becomes feasible.1–3 To this end optical methods have been
considered to be most promising. Substantial experimental
and theoretical efforts have been directed toward studies ad-
dressing optical orientation of electron spins as well as gen-
eration and control of electron spin coherence in semicon-
ductor nanostructures.

Pump-probe techniques are very convenient tools to study
coherent spin dynamics.4 Thereby a circularly polarized
pump pulse, typically with duration between 100 fs and 1 ps,
generates the electron spin orientation, which is subsequently
monitored by the weaker linearly polarized probe pulse de-
layed relative to the pump pulse. The rotation of the probe
polarization plane measured, e.g., in transmission �Faraday
rotation� or reflection �Kerr rotation� geometry is directly
proportional to the electron spin polarization along the opti-
cal axis. In a perpendicular external magnetic field, the co-
herent spin precession of the electrons can be monitored giv-
ing access to the electron spin dephasing times.

Possibilities of optical rotation of the electron spin to
reach all points on the Bloch sphere by the spin vector
have been widely discussed. But only very recently this
goal has been achieved for a single quantum dot,5,6 an en-
semble of singly charged �In,Ga�As quantum dots7 and a
CdTe/�Cd,Mg�Te quantum well �QW�.8 In these experiments
care was taken that only the spin coherence initiated by the
pump is manipulated, but no additional spin coherence is
created by the control. This was achieved when the control
energy was either detuned from the pump energy, so that the
pulses have no spectral overlap, or by means of 2� control
pulses. It was demonstrated that the polarization vector un-
dergoes a full revolution on the Bloch sphere.

In this paper, we report on a different regime, where the
control and pump photon energies coincide. It was shown

that in this regime the spin coherence of Mn spins in CdTe/
�Cd,Mn�Te QWs as a result of the optical excitation shows
additive contributions of the pump and control pulses.9 It can
be enhanced or suppressed by proper choice of the control
polarization and time delay relative to the pump pulse. Here
we investigate the electron spin coherence in CdTe/
�Cd,Mg�Te QWs containing a low density electron gas, for
which spin coherence is generated by resonant excitation of
the negatively charged exciton �trion� resonance.10,11 We
found that the control effect is determined by additive and
nonadditive mechanisms, whose relative strengths depend on
the electron spin polarization initiated by the pump. Surpris-
ingly, a linearly polarized control pulse causes a very effi-
cient suppression of the electron spin coherence, while exci-
tation with such a pulse does not lead to any spin
polarization. The developed quantitative theory allows us to
explain these experimental data quantitatively.

The paper is organized as follows. After introducing the
experiment in Sec. II, in Sec. III experimental results for the
optical control with circularly and linearly polarized control
pulses are described. Also a qualitative model of the effect of
a linearly polarized control on the signal suppression is pre-
sented. Section IV is devoted to quantitative theoretical con-
siderations based on a two-level system for the electron-trion
optical excitation. The experimental results are compared
with the modeling in Sec. V. Here, we also discuss possible
reasons for deviations between the experiment and theory at
high powers of control.

II. EXPERIMENTAL TECHNIQUES

The studied CdTe /Cd0.78Mg0.22Te QW heterostructure
�sample 031901D� was grown by molecular-beam epitaxy on
top of a 2 �m CdTe buffer layer deposited on a
�100�-oriented GaAs substrate. It contains 5 periods, each of
them consisting of a 110-nm-thick Cd0.78Mg0.22Te barrier
and a 20-nm-thick CdTe QW. An additional 110-nm-thick
barrier was grown on top of this layer sequence to reduce the
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influence of surface charges on the confined electronic states
in the QWs. The barriers include 15 nm layers doped by
Iodine donors, which are separated by 20 nm spacers from
the QWs. These modulation doped layers provide electrons
being collected in the QWs, where two-dimensional
electros gases �2DEGs� with a low density of about
ne=2�1010 cm−2 form. This sample has a slightly larger
electron density compared to its partner sample 031901C
�ne=1.1�1010 cm−2� grown on the same substrate by a
wedge growth technique12 which has been studied in Ref. 10.
The optical properties of both samples are, however, similar
to each other, see Refs. 10, 13, and 14 for details.

The measurements were performed in magnetic fields up
to 7 T applied perpendicular to the structure growth axis,
B�z �Voigt geometry�. The sample was immersed in
pumped liquid Helium at a temperature of T=1.9 K.

Time-resolved pump-probe Kerr rotation �KR� technique
was used to study the coherent spin dynamics of the resident
QW electrons.10 Two mode-locked Ti:Sapphire lasers syn-
chronized with each other generated the 1.5 ps pump and
control pulses �spectral width of about 1 meV� at a repetition
frequency of 75.6 MHz. The probe beam was split off from
the pump laser, as sketched in Fig. 1�a�. For the experiments
reported here both lasers were tuned to the same photon en-
ergy corresponding to the trion resonance.

The electron spin coherence was excited by the pump and
control pulses, for which different polarization configura-
tions were used: The control was either co- or cross-
circularly polarized with respect to the pump of fixed circular
�+ polarization, or it was linearly polarized. The induced
spin coherences were monitored by the reflected linearly po-
larized probe pulse, for which the angle of Kerr rotation was
measured by a balanced photodetector interfaced by a
lock-in amplifier, after sending it through a polarization sen-
sitive Glan-Thompson beam splitter. The time delay between
pump and probe pulses could be varied up to 7 ns by a
mechanical delay line. A second delay line was used to set a
fixed delay of the control pulse relative to the pump pulse.
This delay could be changed up to tpc�2 ns in order to tune
the phases of the spin coherences initiated pump and control
with respect to each other.

Two protocols of pump and control beam modulation
were used. First we present experiments, where the signals

are mainly given by the additive effect of the pump and
control actions. Here both pump beam and control beam
were modulated by a chopper at a frequency of 1 kHz, so
that the detected Kerr rotation signal reflects the effect of
both beams. These measurements are described in
Secs. III A–III C.

In order to study the “nonadditive” effect of the control on
the pump induced signal we used a protocol in which only
pump beam was modulated. It was sent through a photoelas-
tic modulator operated at 50 kHz frequency so that the po-
larization was modulated between �+ and �−. The polariza-
tion of the control beam was constant in time. The Kerr
rotation signal was detected at the pump modulation fre-
quency of 50 kHz, which allows us to suppress the additive
contribution to the electron spin polarization induced by the
non-modulated control beam. These results are reported in
Sec. III E.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Photoluminescence �PL� and reflectivity spectra of the
studied QW structure are shown in Fig. 1�b�. The heavy-hole
exciton �X� and negatively charged trion �T� resonances are
clearly seen as minima in the reflectivity spectrum and as
lines in the PL spectrum. They are separated by 2 meV,
which corresponds to the trion binding energy.11,15 The
broadening of these lines is mainly due to exciton and trion
localization on QW width fluctuations. From the relative os-
cillator strengths of the exciton and trion resonances in the
reflectivity spectrum we evaluate the resident electron con-
centration in the QW as ne=2�1010 cm−2 using the method
described in Ref. 16.

A typical Kerr rotation signal measured at a magnetic
field of 0.5 T is shown in Fig. 2 by curve �a�. The �+ circu-
larly polarized pump pulse hits the sample at zero time delay
and induces coherent spin precession of the resident elec-
trons about the external magnetic field. The precession is
reflected by the periodically oscillating Kerr signal amplitude
K�t�. The oscillation period corresponds to the electron
Larmor frequency �e=�BgeB /� with an electron g factor
�ge�=1.64, which is in good agreement with literature data.17

Here �B is the Bohr magneton. The g-factor value was ob-
tained from fitting the experimental data by an exponentially
decaying harmonic function4

K�t� = A exp�−
t

T2
��cos��et� . �1�

Here A corresponds to the signal amplitude, T2
� is the dephas-

ing time describing the signal decay. The evaluated dephas-
ing time T2

�=4.2 ns is considerably longer than the trion re-
combination times in the range of 30–100 ps in CdTe-based
QWs,10 which allows us to ascribe the Kerr signal to resident
electrons.

A. Effect of circularly polarized control on signal amplitude

We turn now to the main topic of the present paper,
namely the effect of control pulses, delayed by a time tpc
relative to the pump pulse, on the electron spin coherence
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FIG. 1. �Color online� �a� Scheme of the three-pulse time-
resolved Kerr rotation experiment. �b� Photoluminescence and re-
flectivity spectra of a 20-nm-thick CdTe /Cd0.78Mg0.22Te QW. PL
was measured under nonresonant cw excitation with photon energy
of 2.33 eV.
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generated by the pump. The modifications induced by the
control depend critically on the reduced phase � with which
the control hits the pump excited electron spin coherence.
This reduced phase is defined as �etpc=�+2�N, where N is
an integer corresponding to the number of full spin preces-
sion periods during the pump-control delay, and 0��	2�.

We describe first the pump-probe experiments, in which a
circularly polarized control was used. We also focus on the
signal amplitude modifications induced by the control, the
changes of the phase are discussed in Sec. III B. To that end
we adjust the delay tpc such that phase �=0 is achieved,
when the Kerr signal amplitude K�t� is maximum. At a mag-
netic field of 0.5 T this condition is fulfilled, e.g., at
tpc=0.87 ns or tpc=0.96 ns. The latter example one can see
in Fig. 2 by comparing curves �a� and �b�. For co-polarized
pump and control pulses �both �+� of the same power the
Kerr signal is enhanced about twice after control action, see
curve �d�. This is the expected result, as in this case the
electron spin polarization generated by the control has the
same orientation as the one generated by the pump after a
few full revolutions about the field. In contrast, cross polar-
ization of the pump ��+� and control ��−� pulses leads to full
suppression of the electron spin precession signal, as shown
by curve �c�. In this case the electron polarizations generated
by the pump and control are antiparallel and compensate
each other.

Note that for the low excitation density regime presented
in Fig. 2 only a small fraction of the resident electrons is
affected by the pump and control pulses. In this case the joint
action of the pump and control can be described such that
each of them generates spin coherence for two independent
subensembles of electrons. The experimentally measured
Kerr rotation signal results from their independent contribu-
tions, which make either additive or subtractive effect on the
observed signal. Note, that a very similar behavior has been
previously reported for the Mn spin coherence in CdTe/
�Cd,Mn�Te QWs.9

Detailed results for the effect of control power on the Kerr
signal amplitude for co- and cross-polarizations of pump and
control are given in Fig. 3. The phase for control pulse ar-
rival was chosen to be �=0, as in Fig. 2. Therefore, the spin
polarizations induced by the pump �Spump� and the control
�Scontrol� are either parallel or antiparallel to each other for
co- and cross-polarizations, respectively. The resultant polar-
ization �Stotal� along the z axis is reduced or increased, as
shown schematically in the corresponding panels of Fig. 3.

The Kerr amplitude increases for the co-polarized con-
figuration shown in Fig. 3�a�, in line with the intuitive ex-
pectations. It decreases for the cross-polarized case given in
Fig. 3�b�, crosses the zero level when the control power be-
comes about equal to the pump power and then shows in-
creasing negative values. These dependencies can be seen in
detail in Fig. 4, where the dependence of the Kerr amplitude
on control power is plotted. To determine the spin beat am-
plitudes the signals after the control pulse arrival were fitted
by Eq. �1�. Triangles and circles give the experimental data
for co- and cross-polarized pump and control pulses, respec-
tively. The absolute changes of the KR amplitudes relative to
the dashed line are larger for the cross-polarized configura-
tion. This results from the faster saturation of the electron
spin for co-polarized excitation compared to the cross-

0.0 0.4 0.8 1.2 1.6

control

pump σ+
& control σ+

(c)

(d)

(b)

pump σ+
& control σ−

K
er

r
ro

ta
tio

n
si

gn
al

(a
rb

.u
ni

ts
)

Time (ns)

pump σ+
only

control σ−
only

(a)

pump

FIG. 2. Kerr rotation signals measured by degenerate pump-
control-probe spectroscopy resonant with the trion energy: �a� Only
pump pulse with �+ polarization and density of 0.3 W /cm2. Evalu-
ated T2

�=4.2 ns. �b� Only control pulse with �− polarization and
density of 0.3 W /cm2. �c� �+ pump pulse and �− control pulse
joint excitation. �d� �+ pump pulse and �+ control pulse joint exci-
tation. B=0.5 T, T=1.9 K. For �b�–�d� tpc=0.96 ns and �=0.

1.10 1.12 1.14 1.16 1.18

Time

K
er

rr
ot

a
tio

n
si

gn
al control

S
pump

S
controlS

total

S
control

S
pump

K
er

r
ro

ta
tio

n
si

gn
al

(a
rb

.u
ni

ts
)

Time (ns)

(a)

pump σ+

control σ+0.4

0.9

P
c
= 6.0 W/cm2

2.1

only pump

1.10 1.12 1.14 1.16 1.18

P
c

= 6.1 W/cm2

only pump

S
total

(b)

K
e

rr
ro

ta
tio

n
si

gn
a

l(
ar

b.
un

its
)

Time (ns)

pump σ+

control σ−

2.6

1.4

0.7

0.3

0.1

z
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polarized case. We will discuss that in more details in
Sec. V A.

B. Effect of circularly polarized control on signal phase

When the control pulse acts on the pump induced polar-
ization at an arbitrary phase �, not only the amplitude of the
Kerr rotation signal changes, but also the phase will be
shifted by an angle 
 after the control pulse arrival. Corre-
sponding experimental data are shown in Fig. 5�a�, where we
chose cross-polarization for pump and control and �=� /2.
The inset in Fig. 5�b� shows schematically that for these
experimental conditions the signal after the control pulse is
expected to show a negative phase shift, i.e., to shift to ear-
lier delays. The signal after control pulse arrival can be de-
scribed by Eq. �1� when replacing cos��et� by cos��et+
�:

K�t� = A exp�−
t

T2
��cos��et + 
� . �2�

In agreement with our qualitative expectations, the signal
phase shown in Fig. 5�b� by the filled circles decreases and
saturates at 
=−� /2 for control powers strongly exceeding
the pump power. The open circles in Fig. 5�b� show the
signal phase evaluated from the experimental signal ampli-
tudes without and with control using the simple additive
model depicted in the inset of Fig. 5�a�. As one can see from
scheme the phase shift 
 is determined in this case of per-
pendicular orientation of Spump and Scontrol by


 = arctan�Scontrol/Spump� . �3�

The overall tendency of the dependences shown by the
closed and open circles is the same. However, they deviate
considerably from each other for control powers exceeding
0.5 W /cm2. This evidences some nonadditive contribution
of the control to the spin coherence generated by the pump,
which we will discuss in detail below.

The results in Fig. 6 have been collected to confirm the
conclusion drawn from the data in Fig. 5, that the phase shift
of the Kerr rotation signal is mainly controlled by the ratio of
the pump and control generated spin polarizations,
Scontrol /Spump. An increase of the control power for constant
pump power causes a shift of the signal to earlier times,
compare curves 1 and 2. This corresponds to an increase of
the phase shift value, as shown by the left diagram. In turn, a
pump power increase for constant control power �curves 2
and 3 and the right diagram� induces a signal shift to later
times. For the chosen power densities these transformations
are dominated by the additive mechanism.

C. Effect of linearly polarized control

In our experimental geometry it is not expected that lin-
early polarized light would induce any spin polarization of
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the resident electrons. Indeed, we did not find any signal for
a linearly polarized pump. However, we observed that the
electron spin polarization induced by a circularly polarized
pump is strongly sensitive to a linearly polarized control.
One can see in Fig. 7 that irrespective of the delay tpc the
Kerr rotation signal is suppressed by a linearly polarized
control. The suppression effect increases for higher control
powers as shown in the inset. One should note that this effect
changes only the signal amplitude but does not induce any
phase shift 
, independently of tpc. The suppression is clearly
a nonadditive effect: generation of spin coherence by the
control pulse is absent, but the signal is still modified. These
experimental findings can be explained by the qualitative
model presented in the following section.

D. Qualitative model consideration of linearly polarized
control action

In order to develop a qualitative picture of the spin depo-
larization by the linearly polarized control we consider the
simple model of a spin ensemble described in Ref. 10. It is
assumed that the control pulse is tuned in the vicinity of the
trion resonance. We represent the linearly polarized pulse as
a superposition of two circularly polarized ones and assume
that at the hit time of the control pulse there are n+ electrons
with spin z component 1/2 and n− electrons with spin z com-

ponent −1 /2. We assume that the control pulse arrives at the
maximum ��=0� or the minimum ��=�� of the pump-
induced spin beats, i.e., there are no in-plane spin compo-
nents at the moment of control pulse arrival.

The absorption of the �+ component of the linearly polar-
ized light generates n+W singlet trions by exciting the same
number of sz=+1 /2 resident electrons. Here W is the prob-
ability of singlet trion formation per electron due to control
pulse action. Analogously, the �− component of the linearly
polarized light generates n−W singlet trions by exciting the
same number of sz=−1 /2 electrons. Provided the hole spin-
flip time is much shorter than the trion radiative lifetime the
electrons bound to trions are left unpolarized after trion re-
combination. Therefore, the total spin of the ensemble is de-
creased by

�Sz = Sz
�a� − Sz

�b� = −
n+ − n−

2
W = − Sz

�b�W . �4�

Here the superscripts �a� and �b� correspond to the spin z
component after and before the control pulse arrival, respec-
tively. The z projection of the total spin of the electron en-
semble after control pulse arrival is given by

Sz
�a� = �1 − W�Sz

�b�. �5�

Clearly, the probability of singlet trion formation is 0�W
�1 so that the electron spin after the control pulse is smaller
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than the spin before the pulse. It follows therefore that the
linearly polarized pump acts as a depolarizer.

E. Nonadditive contribution of control

In this section we address experimentally the question
whether a circularly polarized control, similar to a linearly
polarized one, can serve as a depolarizer of the induced spin
coherence. This will also allow us to obtain in-depth insight
into the nonadditive contribution noted in Sec. III B. Our
goal here is to study modifications of the pump-induced spin
coherence by the control. For that one should exclude Kerr
rotation signal that is directly caused by generation of elec-
tron spin polarization by the circularly polarized control. It is
possible to suppress this signal by implementing the second
measurement protocol described in Sec. II. Only the pump
beam is modulated in this case and lock-in detection allows
us to exclude the direct contribution of the unmodulated con-
trol to the detected spin polarization.

One can see in Fig. 8 that also a circularly polarized con-
trol decreases the Kerr rotation amplitude, similar to the case
of a linearly polarized control. The magnitude of this effect is
identical for �+ and �− polarization of the control and is also
independent of the control delay tpc �not shown�. It is inter-
esting that the suppression efficiency of the circularly polar-
ized control is equal to the one for a linearly polarized con-
trol of the same intensity. This suggests that the responsible
mechanism is the same, which is confirmed by the quantita-
tive analysis given below.

In Fig. 9 the effect of the nonadditive contribution is pre-
sented for various pump and control powers. The Kerr rota-
tion signals are normalized to their maximum amplitudes
before control pulse arrival. Two conclusions follow from
these experimental data. First, the suppression efficiency in-
creases with increase of the control power. Second, the sup-

pression efficiency is determined by the control power only,
compare the signal amplitudes for different pump powers
before and after control arrival for the same control power of
3.5 W /cm2.

It is worthwhile to note here, that for considerable control
powers one may expect the influence of the photogenerated
carriers on the dephasing of the electron spin coherence, i.e.,
on its acceleration after the control pulse arrival. This sce-
nario is not very probable for our case, where the trion reso-
nant excitation is used, as only one electron-hole pair can be
generated in vicinity of the localized resident electron. How-
ever, in order to avoid such contributions we evaluate the
effect of the control pulse on the amplitude of the Kerr rota-
tion signal by fitting the Kerr rotation signal after the control
pulse arrival and considering changes in the amplitude at the
moment of the arrival. In this case the results became inde-
pendent of the dephasing time.

IV. QUANTITATIVE THEORY

The quantitative theory of spin manipulation by a control
pulse is developed following the methods described in Ref.
18. The electric field of the control pulse can be written as

E�r,t� = E�+�r,t�o+ + E�−�r,t�o− + c.c., �6�

where o� are the circularly polarized unit vectors related to
the unit vectors ox �x and oy � y by o�= �ox� ioy� /�2. Here
the components E�+ and E�− are proportional to the product
of the exponential function exp�−i�Ct� with �C being the
control pulse optical frequency and a smooth envelope. We
assume that the optical frequency, �C, is close to the trion
resonance frequency.
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The incident electromagnetic field induces optical transi-
tions between the electron state and the trion state, creating a
coherent superposition of them. In accordance with the se-
lection rules �+ circularly polarized light creates a superpo-
sition of the +1 /2 electron and +3 /2 trion states, while �−

polarized light creates a superposition of the −1 /2 electron
and −3 /2 trion states. In order to describe these superposi-
tions it is convenient to introduce a four component wave
function

 = ��1/2,�−1/2,�3/2,�−3/2� , �7�

where the �1 /2 subscripts denote the electron spin projec-
tion and �3 /2 refer to the spin projection of the hole in the
trion. The electron spin polarization is expressed in terms of
��1/2 as follows

Sz = ���1/2�2 − ��−1/2�2�/2,

Sx = Re��1/2�−1/2
� � ,

Sy = − Im��1/2�−1/2
� � . �8�

Here Re and Im are real and imaginary parts, respectively.
All excited states of the system, such as, e.g., triplet trion
states are neglected. In this respect the model is directly ap-
plicable to the case of a resident carrier strongly localized in
a quantum dot or quantum well imperfection. The role of
excited states will be discussed below, in Sec. IV C.

Further, we assume that the delay between the pump and
control pulses exceeds by far the radiative lifetime of the
trion, hence, just before the control pulse arrival there is a
resident electron with precessing spin but no trion. The state
of the system just before the control pulse arrival corre-
sponds to the nonzero components ��+1/2�2+ ��−1/2�2=1 and
��3/2=0.

Following the method in Ref. 18 and introducing smooth
envelopes for the �+ and �− polarized components of the
control pulse by

f��t� = −
ei�Ct

�
� d�r�E��

�r,t�d3r ,

where d�r� is the effective transition dipole, see Eq. �12� in
Ref. 18, one may reduce the Schroedinger equation for the
four-component wave function to two independent differen-
tial equations for ��1/2�t�, which take the following simple
form

�̈�1/2 − 	i�� +
ḟ��t�
f�t�


�̇�1/2 + f�
2 �t���1/2 = 0. �9�

Here ��=�C−�0 is the detuning between the control pulse
optical frequency and the trion resonance frequency, �0. This
simple form of Eq. �9� follows from �i� disregarding other
excited states of the system and �ii� neglecting the control
pulse duration compared to the trion lifetime and the electron
spin precession period in magnetic field. Below we discuss
the cases of linearly and circularly polarized control pulses.

A. Linearly polarized control

In case of a control pulse linearly polarized along the x
axis the circular components of the pulse envelope function
can be written as

f��t� =
�

�2 cosh��t

�p
� , �10�

where the factor 1 /�2 is introduced for convenience, � char-
acterizes the amplitude of the control pulse and �p is its
duration. The pulse area is defined as �=2��p. The solution
of Eq. �9� can be recast as18

�1/2�+ �� = �1/2�− ��Qle
i�l,

�−1/2�+ �� = �−1/2�− ��Qle
i�l, �11�

where the constants Ql and �l describe the transformation of
the wave function under action of the linearly polarized
pulse. For the case of a Rosen and Zener pulse, Eq. �10�, one
has

Ql
2 = 1 −

sin2��l/2�
cosh2��y�

, �12�

where �l=2��p /�2 is the effective area of each circularly
polarized component of the control pulse, and
y=���p / �2��. The expression for the constant �l is rather
bulky and is therefore not given here, see Eq. �26� in Ref. 18.

Using the definitions of the spin components, Eqs. �8�,
one can readily obtain from Eq. �11� that the spin vector of
an electron after the control pulse, S�a�, is connected with the
electron spin vector before the control pulse arrival, S�b�, by

S�a� = Ql
2S�b�, �13�

i.e., the spin vector before the control pulse is simply multi-
plied by some nonnegative quantity Ql

2�1. If the electron is
left behind unpolarized after trion decay, i.e., when the trion
lifetime is longer than the hole spin relaxation time, then the
total spin of the electron ensemble is decreased, in agreement
with the simplified Eq. �5� obtained from qualitative argu-
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ments. The dependence of the depolarization factor Ql
2 on the

control pulse area for different detunings between the trion
resonance and the control optical frequencies is shown in
Fig. 10. The depolarization efficiency shows Rabi oscilla-
tions and is larger for small detunings.

In the case of small control power effective pulse area
�l�1, and for negligible detuning between the control pulse
and the trion resonant frequency, y�1, one can represent Ql

2

in Eq. �12� as

Ql
2 � 1 −

���p�2

2
. �14�

B. Circularly polarized control

Now we turn to the case of circularly polarized control
pulses. For a �+ polarized control pulse the envelope func-
tion

f+�t� =
�

cosh��t

�p
� , f−�t� = 0. �15�

The time integrated intensities of the circularly polarized
pulse ��−�

� f+
2�t�+ f−

2�t��dt and of the linearly polarized pulse,
Eq. �10�, are the same.

Making use of Ref. 18, we obtain the following expres-
sions which link the spin components before and after con-
trol pulse arrival,

Sz
�a� = �

1 − Qc
2

4
+

Qc
2 + 1

2
Sz

�b�, �16�

Sx
�a� = Qc cos �cSx

�b� � Qc sin �cSy
�b�, �17�

Sy
�a� = Qc cos �cSy

�b� � Qc sin �cSx
�b�. �18�

Here the upper signs of � and � correspond to a �+ polar-
ized control and the lower signs to a �− polarized control.
The constant Qc is given by

Qc
2 = 1 −

sin2��c/2�
cosh2��y�

,

where �c=�2�l=2��p. For small pulse areas �c�1 and
y�1

Qc
2 � 1 − ���p�2. �19�

The parameter �c describes the phase of the electron wave
function acquired due to the control pulse action and de-
scribes the spin rotation by an optical pulse. The expression
for the constant �c is presented, e.g., in Eq. �26� of Ref. 18.

The modification of the spin z component by a �+ control
pulse for different pump pulse areas are shown in Fig. 11.
Each curve shows the control pulse area dependence for a
fixed pump pulse area �0=2�0�p, where �0 is the amplitude
of the pump pulse envelope as defined in Eq. �15�. Rabi
oscillations with period 2� are clearly seen. Here we as-
sumed that the control pulse arrives at �=0, i.e., in the same

phase as the pump pulse. Note, that a �+ polarized pump
results in an electron spin z-projection Sz	0, and corre-
sponds to positive values of the measured Kerr rotation sig-
nal, K�t�. For convenient comparison of the theoretical and
experimental results we invert the direction of the axis of the
“spin z component” in the theoretical figures. Here and be-
low the electron spin dephasing is completely neglected in
the calculations. The modification of the spin component Sz

�a�

comprises both additive and nonadditive contributions. Inter-
estingly, for co-polarized pump and control �solid lines� the
modification is weaker compared with the cross polarized
configuration �dashed lines�. This is because the absolute
spin value �Sz� is limited by 1/2 and when the spin projection
is closer to −1 /2 �pump and control are co-�+ polarized� the
effect of the control pulse is weaker.

Time-resolved spin signals calculated for various control
pulse powers for the control pulse arrival at different phases
of the spin beats are very similar to the experimental data
shown in Figs. 3�a�, 3�b�, and 5�a�. For the sake of compari-
son we plotted in Fig. 12�a� the time dependencies of the
spin z component calculated for the control pulse arrival at
the zero of spin beats, i.e., phase �=3� /2 for the co-
circularly polarized pump and control pulses. In accordance
with the experiment, Fig. 5�a�, both amplitude and phase of
the spin beats change with the control power.

Before turning to the detailed comparison of experiment
and theory we note that, in agreement with Eq. �16�, there
are two contributions to the spin z component of an electron
after circularly polarized control pulse arrival. The first con-
tribution is an additive one: it changes its sign upon reversal
of the circular polarization of the control pulse and it does
not depend on the spin state before control pulse arrival. For
weak control power, ��p�1, and negligible detuning, y�1,
the additive part to Sz

�a� is given by, see Eq. �19�
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�
1 − Qc

2

4
� �

���p�2

4
. �20�

This additive contribution equals exactly the spin z compo-
nent created by a pump pulse of the same power.

Another contribution to the electron spin after control
pulse action is a nonadditive one. It can be interpreted as a
transformation of the electron spin by the control pulse. This
contribution is given by

Qc
2 + 1

2
Sz

�b� � 	1 −
���p�2

2

Sz

�b�, �21�

where the last approximate equality holds for weak control
power and small detuning. This nonadditive contribution is
independent of the circular polarization sign and always de-

creases the z component of electron spin. The comparison of
Eq. �21� with Eqs. �13� and �14� shows that for weak control
powers the depolarization of the electron spin z component
by circularly and linearly polarized light is the same.

The in-plane spin components are also affected by the
circularly and linearly polarized control pulses. The absolute
value of the in-plane spin projection S�=�Sx

2+Sy
2 is de-

creased by the factor Qc�1− ���p�2 /2 �the latter equality
holds for weak control pulses�, similar to the case of a lin-
early polarized control. In addition, the detuned circularly
polarized control pulse rotates the in-plane spin by the angle
�c around the z axis.

It is noteworthy to analyze the spin beats phase after cir-
cularly polarized control arrival at �=� /2 where the signal
amplitude is zero. In order to calculate the spin beats phase
we assume that the magnetic field is applied along the x axis.
We neglect the detuning between the control pulse optical
frequency and the trion resonance frequency. Hence, the
phase shift of the spin beats induced by the control is given
by


 = arctan�Sz
�a�/Sy

�a�� , �22�

where the spin precession direction was assumed to be clock-
wise in the �yz� plane. The dependence of 
 on the control
pulse area is shown in Fig. 12�b� by the solid line. We com-
pare this phase with the results of the simplified additive
model, where we assume that the y spin component is con-
served and we take into account the additive contribution of
Eq. �16�. The phase shift in the additive model is


� = arctan
Qc

2 − 1

4Sy
�b� . �23�

This shift is shown by the dashed line in Fig. 12�b�. The
qualitative behaviors of the two shifts 
 and 
� are the same,
however, the exact model predicts a stronger phase shift.
This results from the suppression of the in-plane components
induced by the circularly polarized light.

FIG. 12. �Color online� �a� Time resolved dependencies of Sz

calculated for the control pulse arrival at beats zero �=3� /2. Dif-
ferent curves correspond to different amplitudes of the control
pulse. The pump and control pulses are co-circularly polarized ��+�.
�b� Phase of the spin beats after control pulse arrival at zero signal
��=� /2�. Pump and control are co-circularly polarized. Solid line
gives exact calculation, dashed line is result of an approximate
model which accounts for additive contributions by the control
only. The absolute spin value for a single electron was taken to be
0.05, which corresponds to a pump area �0=2�0�p=0.93.
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Figure 13 shows the electron spin z component after con-
trol pulse arrival, calculated as function of control pulse area
for two pump pulse areas and for co- and cross-polarized
configurations. We assumed that the control pulse arrives at
phase �=0 of the spin beats. For a weak pump pulse
��0=� /10� the additive contribution by the control is domi-
nant. The modification of the electron spin component is
almost the same in the co- and cross-polarized configurations
as it mostly scales with control power. The maximum abso-
lute value of the electron spin projection in this case is close
to 0.25, in agreement with Eq. �16� for Sz

�b��1.
The case of a strong pump pulse, �0=�, is different. Fig-

ure 13 shows a strong asymmetry for the induced polariza-
tions in the co- and cross-polarized configurations. In the
cross-polarized case the change of the spin z component is
about the same as for a weaker pump. In the co-polarized
configuration the control pulse effect is much weaker. This is
because the electron spin coherence generated by the pump
pulse is partially suppressed by the control pulse. For this
configuration the maximum absolute value of the electron
spin z component is 1 /4+1 /8=0.375 according to Eq. �16�.

Let us also analyze the nonadditive effect by the control
pulse for the case when it arrives exactly in the maximum or
minimum of the spin beats ��=0 or ��, i.e., when the in-
plane spin components before control pulse arrival are zero
Sx

�b�=Sy
�b�=0. In this case the electron spin z component is

simply suppressed by the nonadditive contribution, in agree-
ment with Eqs. �16� and �21�. The efficiency of the spin
depolarization is illustrated in Fig. 14. For small pulse areas
indeed the depolarization is the same for the linearly and the
circularly polarized control. Rabi oscillations are seen with
period 2� for the circularly polarized control and with period
2�2� for the linearly polarized control. For a circularly po-
larized control the depolarization is weaker and not com-

plete: one can suppress the spin polarization by no more than
a factor of 2, while complete depolarization is possible by
linearly polarized light. Note, that complete depolarization is
possible for any arrival phase of the control pulse in case of
linear polarization.

It is worth to mention that the degree of spin suppression
by circularly polarized light is model sensitive. In the follow-
ing Sec. IV C, we demonstrate that the extension of the
model to account for the trion excited states could result in
stronger spin suppression by the circularly polarized control.

C. Effects of very strong circularly polarized control
pulses

Here we analyze briefly the effect of circularly polarized
control pulses of very high intensity. We have seen that the
model description in terms of a two-level model gives a
complete depolarization of the electron spin by linearly po-
larized light and partial �by a factor of 2, at most� depolar-
ization by circularly polarized light. This is because the tran-
sition for a given circular polarization involves just two
levels, the ground electron state and an excited �singlet� trion
state. Therefore, only one component of the electron spin is
pumped into the trion state and becomes subsequently depo-
larized, while another one is maintained.

There are other possible excited states in the system, e.g.,
the triplet trion state, which can be populated by polarized
light absorption. In the classical approach10 this state can be
considered as an exciton interacting with a resident electron.
Due to the electron spin-flip within a triplet trion a singlet
trion state can be formed.

To analyze the nonadditive effect of a circularly polarized
control pulse for the case when the triplet trion/exciton can
be photocreated, we denote the probability of singlet trion
formation via an exciton as a result of the following
process: electron −1 /2+exciton �−1 /2,3 /2�, afterwards
electron spin-flip and formation of �−1 /2,1 /2,3 /2� or

�−1 /2,1 /2,−3 /2� trion� by W̃ and the probability of direct
singlet trion formation 1/2 electron+photocreated exciton
�−1 /2,3 /2� yields �−1 /2,1 /2,3 /2� trion� as W.

Let us do the analysis for the experimental scenario of
Sec. III E where the pump polarization is assumed to be
modulated while the control is always �+ polarized. If the
electron spin before control arrival is 1/2 the electron spin
after trion recombination is �1−W� /2, because in this case
direct singlet trion formation occurs. If the electron spin after
control arrival is −1 /2 then its spin after trion recombination

is −�1−W̃� /2, since formation of a triplet trion/exciton is
required. The detected signal is suppressed compared to the
case without control by the factor

Sz
�a� = �1 −

W + W̃

2
�Sz

�b�. �24�

At high pump powers both W and W̃ approach unity �see
Ref. 10� and the spin after control is completely erased.
Clearly, W approaches 1 faster since no electron spin-flip is
needed. Therefore one can expect a kind of “two-stage” be-
havior of suppression: first the spin is suppressed down to
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the level �1−W̃� /2 of its value before control pulse arrival,
and further increase in control power yields complete sup-
pression.

This process can be described quantum mechanically by
extending the wave function , Eq. �7�, to allow for the two
triplet trion states with total spin projection �1 /2, formed by
two spin down electrons and a 3/2 hole or two spin up elec-
trons and a −3 /2 hole. For a �+ control pulse the electron
−1 /2 is excited into a 1/2 triplet trion, and, following18 we
obtain

�−1/2�+ �� = Q̃c exp�i�̃c��−1/2�− �� ,

�1/2�+ �� = Qc exp�i�c��1/2�− �� .

Note that the constants Qc and Q̃c �as well as �c and �̃c� are
different because the triplet trion is usually shifted in energy
as compared with the singlet one.11 If we assume, that after
trion recombination the electron is left behind unpolarized,
then its spin z component is given by

Sz
�a� = −

Q̃c
2 − Qc

2

4
+

Q̃c
2 + Qc

2

2
Sz

�b�. �25�

Equation �25� clearly shows that there are both additive and
nonadditive contributions to the electron spin z component.
The nonadditive contribution is

Sz
�a� =

Q̃c
2 + Qc

2

2
Sz

�b�. �26�

One sees that excitation of the triplet trion state results in
additional suppression of the electron spin polarization.

We note that the probability of singlet trion formation by
a short pulse is 1−Qc

2 and the probability of triplet trion

formation is 1− Q̃c
2. Hence, the quantum and classical ap-

proaches are equivalent to each other if we take W=1−Qc
2

and W̃=1− Q̃c
2.

It is instructive to consider two limiting cases:

�i� Only the triplet trion is excited �Q̃c�0, Qc=0�. The
nonadditive spin suppression is fully described by the theory
developed in Secs. IV A and IV B by changing

Qc→ Q̃c, �c→�̃c and replacing � by � in Eq. �16�. Sup-
pression by the circularly polarized light is possible by a
factor 2 only, similar to the situation when only the singlet
trion is excited.

�ii� The formation probabilities of the singlet and triplet

trions are the same, Qc
2= Q̃c

2. The spin suppression factor for
circularly polarized control is given by Qc

2, see Eq. �25�, i.e.,
complete depolarization is possible, see thin solid curve in
Fig. 14. It is remarkable that in this case the depolarization
effect by linearly and circularly polarized controls of the
same area are identical.

V. DISCUSSION

A. Comparison theory and experiment

So far, we have established experimentally and theoreti-
cally that the control pulse has, in general, a twofold effect

on the electron spin coherence in quantum wells. First, a
circularly polarized control pulse generates additional spins
and results in an additive contribution to the spin beats. Be-
sides, the control pulse affects the spins that are already po-
larized by the pump pulse, leading to suppression of the
pump-induced spin coherence. The latter effect is possible
both for circularly and linearly polarized control pulses.

To do a quantitative comparison of the experimental and
theoretical results we consider in detail the effect of the spin
coherence suppression by linearly and circularly polarized
light. Figure 15 shows the suppression efficiency, i.e., the
ratio Sz

�a� /Sz
�b� as function of control pulse power for a lin-

early polarized control �closed circles� and a circularly po-
larized control �open circles�. We focus on the small control
power regime Pc�5 W /cm2 illustrated in detail in Fig.
15�b�. In this regime, the efficiency of suppression increases
linearly with increasing control pulse power. We fit the ex-
perimental data for the linearly polarized control by Eq. �13�.
We obtain the relation between the control power, Pc, and the
linearly polarized control pulse area, �l, see Eq. �12� in the
form:
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polarization �circles�. B=0.5 T and T=1.9 K. Curves are theoreti-
cal calculations: suppression for linear polarization �solid red line�
and for circular polarization �solid blue line�. Dashed curve shows
small power asymptotics.
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Pc = C�l
2, �27�

where the value of the coefficient C�0.63 W /cm2 was de-
termined from the best fit to the experimental data. It was the
only fitting parameter in our modeling. The theoretical curve
corresponding to the limit of �l�1 is shown by the dashed
line in Fig. 15. Further, we use the same value of the param-
eter C in the whole range of control powers which allows us
to avoid introduction of other parameters.

The solid thick red and thin blue lines show the suppres-
sion efficiency as function of control power for linear and
circular polarizations of the control pulse, respectively. They
are calculated for the whole range of experimentally used
powers by Eqs. �14� and �21�, using the link between the
control power and its area from Eq. �27�, see Fig. 15�a�. The
theory reproduces the experimental data well for control
powers P�5 W /cm2. For higher powers the discrepancy
between experiment and theory is large, the reasons for that
are discussed in Sec.V B.

It is worth to note that other experimental data recorded at
low-pump powers are in good agreement with the theory.
Figure 4 shows the normalized amplitude of the Kerr rotation
signal measured as function of control power for co- and
cross-polarized configurations. The lines in Fig. 4 show the
theoretical calculations obtained from Eq. �16� using the re-
lation between the pulse area and control power Eq. �27�
with the same value of C=0.63 W /cm2 as in Fig. 15. Good
agreement between the experimental data and theoretical
curves is seen. Figure 4 shows that for co-polarization the
amplitude of the signal saturates faster than for cross-
polarization. This is reasonable, because the spin projection
of a single electron is limited by 1/2. Therefore, in co-
polarization the spin should saturate faster because spin with
projection of the same sign is added and, therefore, the spin
reaches the maximum value faster.

We also address the phase shift of the spin beats 
 as
function of control power, Fig. 5�b�. The black circles show
the phases of the Kerr signal after control pulse arrival ex-
tracted from the experimental data. The dashed curve was
calculated in the additive model by Eq. �23�, and the solid
curve shows the theoretical result taking into account addi-
tive and nonadditive effects, Eq. �22�. In both calculations
the same relation between the pulse area and its power given
by Eq. �27� was used. The solid theoretical curve reproduces
well the decrease of the phase shift from 0 to −� /2 and its
saturation, confirming that indeed nonadditive effects need to
be considered for a comprehensive analysis.

B. Effects of high-control powers

As mentioned above, Fig. 15 shows significant discrepan-
cies between experiment and theory for control powers
Pc�5–10 W /cm2. First, Rabi oscillations are not observed
experimentally. Second, linearly and circularly polarized
control suppress the spin coherence with about same effi-
ciency, while the theory predicts that the suppression for cir-
cular polarization should not exceed 50%.

The absence of the Rabi oscillations shows that the quan-
tum model of Ref. 18 used here is not fully applicable for
quantum well structures. Indeed, the classical approach de-

veloped in Refs. 10 and 19 shows that at high-pumping pow-
ers saturation effects become important. The classical ap-
proach to the description of spin coherence generation and
the quantum approach of Ref. 18, extended here to allow for
linearly polarized control pulse, coincide exactly in the limit
of weak pump and control powers.10 With an increase in
control power the quantum mechanical approach predicts
Rabi oscillations for the control parameters Ql and Qc. The
quantum approach is justified for quantum dots where elec-
trons and trions preserve their coherence on the time scale of
pump or control pulse. The applicability of the quantum ap-
proach for quantum wells is governed by the relation be-
tween the pulse duration �p and the scattering time between
different trion states �1. If �p��1 the two-level model, which
describes electron to trion excitation under light pulse action,
is valid. Otherwise, if �p��1 the trion can scatter to another
state during the pulse action and, therefore, the Rabi oscilla-
tions become damped.

To illustrate the transition from the quantum to the clas-
sical model we performed calculations of the suppression
factor Sz

�a� /Sz
�b�=Ql

2 as function of the linearly polarized pulse
area �l, taking into account a finite scattering time between
different trion states. We introduced it as a negative imagi-
nary part −i / �2�1� of the trion resonance frequency, �0, in
Eq. �9�. The calculated depolarization factor is shown in Fig.
16. It is seen that the Rabi oscillations become less pro-
nounced with increase of �p /�1 and eventually disappear for
�p /�1�3.

The discrepancy of the theoretical predictions and the ex-
perimental data for a circularly polarized control results from
limitations of the model. We consider the optical transition
from a localized electron state to a trion state within a two-
level model neglecting completely other excited states such
as, e.g., triplet trion states, etc. Their inclusion, see Sec. IV C
and thin solid curve in Fig. 14, may result in the complete
suppression of the Kerr signal due to the nonadditive contri-
bution of the circularly polarized control pulse. In addition,
heating of the electron ensemble can be considerable for
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ferent ratios of pulse duration �p and trion scattering time �1:
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pump powers exceeding 5 W /cm2 and can cause reduction
of the signal both in linear and circular polarization.

C. Efficiency of electron spin manipulation

It is instructive to analyze the efficiency of spin control by
circularly polarized pulses. To this end we plot in Fig. 17 the
absolute value of the spin z component change caused by the
control pulse, �Sz

�a�−Sz
�b��, as function of control and pump

pulse areas using Eq. �16�. We assume that the pump and
control pulses are co-polarized and that the control pulse
arrives at �=0 of the spin beats. It is clearly seen that the
modification of the spin z component is a nonmonotonous
function of the pump and control pulse areas. The control
efficiency depends strongly on the pump area. For instance,
if the pump area corresponds to a � pulse, �0=�, i.e., the
pump effect is maximal, the control effect is reduced as com-
pared with the case of �0=0, where the pump is absent. This
is a result of the nonadditive effect of the control pulse: if
there is already some spin polarization, it is then reduced by
the nonadditive effect. In other words, the electron spin pro-
jection is limited by �Sz��1 /2, therefore, the larger is the
spin created by the pump, the weaker is the effect of the
control that can be realized.

For the cross-polarized control and pump configuration
�or in the case the co-polarized control arrives at �=� of the
spin beats� the spin z component modification is stronger.
Indeed, the nonadditive effect of the control suppresses the
spin polarization and the spin coherence added by the control
pulse has an inverse sign as compared with the pump-
induced one. Therefore, an increase of the control pulse area
from 0 to � always increases �Sz

�a�−Sz
�b�� independent of the

pump pulse area, contrary to the co-polarized configuration.
So far, in our theoretical considerations we have neglected

the effect of the phase �c in Eqs. �17� and �18� on the elec-
tron spin coherence. It follows from these equations that for
�c�0 the electron spin can be rotated in the �x ,y� plane by
the control pulse. Such rotation would gain the finite spin
component of the electron spin polarization on the direction
of external magnetic field. The rotation depends on the de-
tuning between the control optical frequency and trion reso-
nance frequency. For zero detuning the rotation is absent.
The spin rotation angle has different signs for positive and
negative detunings.7,18 Therefore, even for a spectrally
broadened control pulse, which is resonant with the trion
transition, the effect of rotation vanishes due to the ensemble
averaging. Experimental realization of the spin rotation can
be also prevented by a short trion scattering time similarly to
the suppression of Rabi oscillations, see Sec. V B. It is worth
to mention, however, that the spin rotation by the circularly
polarized control pulses was realized in undoped GaAs quan-
tum wells at exciton resonance excitation,21 in CdTe quan-
tum wells at off-resonant trion excitation8 and in quantum
dot ensembles for the trion excitation, where the decoherence
is rather weak.7

VI. CONCLUSIONS

We have demonstrated experimentally the possibility to
manipulate the electron spins in quantum wells by means of
polarized laser pulses. We have shown that the coherence of
resident electrons can be increased or decreased by a circu-
larly polarized control pulse depending on the pump/control
delay and the relative polarizations of the pump and control
pulses. This additive effect is a result of spin coherence gen-
eration by the control pulse, which may be added to or sub-
tracted from the pump-induced spin coherence.

We have also found a nonadditive effect of the circularly
polarized control pulse. This contribution is experimentally
detected by a special modulation protocol where the control
pulse is not modulated while the pump pulse is modulated
and the Kerr signal is detected by a lock-in technique. The
measured signal is decreased by the control pulse and the
suppression efficiency is determined by the control pulse
power only. It is independent of the circular polarization of
the control pulse and the amount of spin coherence induced
by the pump.

A similar suppression is observed for linearly polarized
control pulses which do not generate any spin coherence in
our geometry. The suppression efficiency is the same for lin-
early and circularly polarized pulses at relatively small con-
trol powers.

The experimental findings are well explained by the pro-
posed theoretical model which takes into account the forma-
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polarized configuration and �=0.
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tion of the singlet trion, localized on an imperfection of an
n-type quantum well, by polarized light. The electron spin
left over from the trion after its radiative recombination is
depolarized. Since linearly polarized light results in trion for-
mation regardless of the electron spin projection the spin
coherence is suppressed. The model describes both the addi-
tive and nonadditive effects by circularly polarized control
pulses.

The developed model can also be applied to describe the
electron spin coherence control in quantum dots. Similarly
to quantum well systems studied here, both additive and
nonadditive effects of the control pulse should be manifested
in that case. One may also expect the observation of Rabi
oscillations of spin suppression for the quantum dot systems
since the trion state is much more robust and observations of
Rabi oscillations have been reported, e.g., in experiments
with optical generation of spin coherence in an ensemble of
singly charged �In,Ga�As/GaAs quantum dots.20

The manifestations of the nonadditive effect are related
with the considerable spin polarization generated by the
pump pulse, and in general, do not require the trion as an
intermediate state in the spin coherence manipulation. The

high-spin polarization regime can be achieved for the widely
studied quantum wells containing a dense electron gas. How-
ever, it occurs at much higher excitation densities where
other non-linear effects complicate the interpretation of the
experimental data. On the contrary, in quantum wells with a
low density electron gas as studied here a relatively high spin
polarization can be reached already at rather low-excitation
powers.
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